Projet de règlement grand – ducal ayant pour objet de modifier le règlement grand – ducal modifié du 16 mars 2012 concernant la qualité de l'essence et des carburants diesel et l'utilisation durable des biocarburants et modifiant le règlement grand – ducal du 21 février 2000 concernant la teneur en soufre de certains combustibles liquides

Nous Henri. Grand - Duc de Luxembourg, duc de Nassau;

Vu la loi modifiée du 21 juin 1976 relative à la lutte contre la pollution de l'atmosphère ;

Vu la directive 2009/28/CE relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables ;

Vu la directive 2009/30/CE modifiant la directive 98/70/CE en ce qui concerne les spécifications relatives à l'essence, au carburant diesel et aux gazoles ainsi que l'introduction d'un mécanisme permettant de surveiller et de réduire les émissions de gaz à effet de serre, modifiant la directive 1999/32/CE du Conseil en ce qui concerne les spécifications relatives aux carburants utilisés par les bateaux de navigation intérieure et abrogeant la directive 93/12/CEE;

Vu la directive (UE) 2015/652 établissant des méthodes de calcul et des exigences de déclaration au titre de la directive 98/70/CE concernant la qualité de l'essence et des carburants diesel ;

Vu la directive (UE) 2015/1513 modifiant la directive 98/70/CE concernant la qualité de l'essence et des carburants diesel et modifiant la directive 2009/28/CE relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables ;

Vu les avis de la Chambre de commerce, de la Chambre des métiers et de la Chambre des salariés ; Notre Conseil d'Etat entendu ;

Sur le rapport de Notre Ministre de l'Environnement, de Notre ministre de l'Economie et de Notre Ministre de la Santé et après délibération du Gouvernement en conseil ;

Arrêtons:

Art. 1^{er}. L'article 1^{er} du règlement grand – ducal modifié du 16 mars 2012 concernant la qualité de l'essence et des carburants diesel et l'utilisation durable des biocarburants et modifiant le règlement grand – ducal du 21 février 2000 concernant la teneur en soufre de certains combustibles liquides, est modifié comme suit:

«Art. 1er. Champ d'application

- (1) Le présent règlement s'applique, d'une part, aux carburants utilisés pour la propulsion des véhicules routiers, des engins mobiles non routiers (y compris les bateaux de navigation intérieure lorsqu'ils ne sont pas en mer), des tracteurs agricoles et forestiers, des bateaux de plaisance lorsqu'ils ne sont pas en mer, et, d'autre part, à l'électricité destinée au fonctionnement des véhicules routiers.
- (2) Le présent règlement détermine, pour les véhicules routiers et les engins mobiles non routiers (y compris les bateaux de navigation intérieure lorsqu'ils ne sont pas en mer), les tracteurs agricoles et forestiers et les bateaux de plaisance lorsqu'ils ne sont pas en mer:
- « 1). aux fins de la protection de la santé et de l'environnement, les spécifications techniques applicables aux carburants destinés à être utilisés pour des moteurs à allumage commandé et des moteurs à allumage par compression, compte tenu des spécifications desdits moteurs ; et
- 2). la méthode de calcul de l'intensité d'émission de gaz à effet de serre des carburants et des autres types d'énergie produits à partir des sources non biologiques. »

Art. 2. A l'article 2 du même règlement, le point 9 prend la teneur suivante :

« 9. « gazoles destinés à être utilisés pour les engins mobiles non routiers (y compris les bateaux de navigation intérieure) et les tracteurs agricoles et forestiers, ainsi que pour les bateaux de plaisance » : tout liquide dérivé du pétrole et relevant des codes NC 2710 19 41 et 2710 19 45 , destiné à être utilisé dans les moteurs à allumage par compression visés dans les directives du Parlement européen et du Conseil 94/25/CE, 97/68/CE et 2000/25/CE; »

Art. 3. L'article 2 du même règlement est complété par les points 11 à 15 suivants :

- « 11. « émissions en amont» : toutes les émissions de gaz à effet de serre produites avant l'entrée de la matière première dans une raffinerie ou une installation de traitement dans laquelle le carburant, tel que visé à l'annexe I, a été produit; »
 - 12. «bitume naturel» : toute source de matière première de raffinerie qui:
- 1) présente une densité API (American Petroleum Institute) inférieure ou égale à 10 degrés mesurée in situ, au lieu d'extraction, conformément à la méthode d'essai D287 de l'American Society for Testing and Materials (AST);
- 2) présente une viscosité annuelle moyenne, mesurée à la température du gisement, supérieure au résultat de l'équation: viscosité (centipoise) = 518,98^{e-0,038T}, T étant la température en degrés Celsius:
- 3) est conforme à la définition des sables bitumineux correspondant au code NC 2714 de la nomenclature combinée qui figure dans le règlement (CEE) n° 2658/87 du Conseil ; et
- 4) se caractérise par le fait que la mobilisation de la source de matière première nécessite une extraction minière ou un drainage par gravité thermiquement assisté dans lequel l'énergie thermique provient principalement d'autres sources que la source de la matière de base ellemême:
- 13. «schiste bitumeux»: toute source de matière première de raffinerie présente dans une formation rocheuse contenant du kérogène à l'état solide, conforme à la définition des schistes bitumineux correspondant au code NC 2714 qui figure dans le règlement (CEE) n° 2658/87. La mobilisation de la source de matière première s'effectue par extraction minière ou par drainage par gravité thermiquement assisté;
- 14. «norme de base concernant les carburants» : une norme de base concernant les carburants compte tenu des émissions de gaz à effet de serre sur l'ensemble du cycle de vie, par unité d'énergie, imputées aux carburants fossiles en 2010;
- 15. «pétrole brut conventionnel»: toute matière première de raffinerie présentant une densité API supérieure à 10 degrés mesurée in situ, dans le gisement, selon la méthode d'essai D287 de l'ASTM et ne correspondant pas à la définition du code NC 2714 figurant dans le règlement (CEE) n° 2658/87. »

Art. 4. L'article 3 du même règlement est remplacé comme suit :

« Les modifications à l'annexe I, II et III de la directive modifiée 98/70/CE du Parlement européen et du Conseil du 13 octobre 1998 concernant la qualité de l'essence et des carburants diesel et modifiant la directive 93/12/CEE du Conseil que la Commission est habilitée à prendre au moyen d'un acte délégué en vertu des articles 10 et 10bis de la directive précitée, s'appliquent avec effet au jour de la date de l'entrée en vigueur des actes modificatifs afférents de l'Union européenne.

Le membre du Gouvernement ayant l'Environnement dans ses attributions publiera un avis au Mémorial, renseignant sur les modifications ainsi intervenues, en y ajoutant une référence à l'acte publié au Journal officiel de l'Union européenne. »

- Art. 5. À l'article 4 du même règlement, le paragraphe 2 est modifié comme suit :
- « (2) L'essence ne peut être mise sur le marché que si elle est conforme aux spécifications environnementales fixées à l'annexe I de la directive précitée 98/70/CE. »
- Art. 6. À l'article 4 du même règlement, le paragraphe 4 est modifié comme suit :
- « (4) Conformément à l'accord préalable de la Commission au titre de l'article 3, paragraphe 5 de la directive précitée 98/70/CE, le ministre autorise au cours de la période d'été la mise sur le marché d'essence contenant de l'éthanol et dont le niveau de pression de vapeur est de 60 kPa et, en outre, le dépassement autorisé de la pression de vapeur indiqué à l'annexe III de la directive précitée 98/70/CE, à condition toutefois que l'éthanol utilisé soit du bioéthanol.

Cette dérogation est limitée dans le temps et ne vise que la période d'été telle définie par l'article 12, paragraphe 1er. »

- Art. 7. À l'article 5 du même règlement, le paragraphe 1er est modifié comme suit :
- « (1) Les carburants diesel ne peuvent être mis sur le marché que s'ils sont conformes aux spécifications fixées à l'annexe II de la directive précitée 98/70/CE. Nonobstant les prescriptions de l'annexe II de la directive précitée 98/70/CE, la mise sur le marché de carburants diesel ayant une teneur en EMAG supérieure à 7% est autorisée. »
- **Art. 8.** Le paragraphe premier de l'article 9 du même règlement est complété par un quatrième alinéa formulé comme suit :
- « Les fournisseurs de biocarburants destinés à être utilisés dans l'aviation peuvent contribuer à l'obligation de réduction des émissions de gaz à effet de serre prévue par l'article 2bis de la loi modifiée du 21 juin 1976 relative à la lutte contre la pollution de l'atmosphère pour autant que les dits biocarburants respectent les critères de durabilité fixés par le règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides.»
- Art. 9. A l'article 9 du même règlement, le paragraphe 3 est supprimé.
- Art. 10. A l'article 9 du même règlement, le paragraphe 4 est modifié comme suit :
- « (4) Les émissions de gaz à effet de serre des biocarburants, produites sur l'ensemble du cycle de vie, sont calculées conformément au règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides.

Les fournisseurs utilisent la méthode de calcul figurant à l'annexe I pour déterminer l'intensité d'émission de gaz à effet de serre des carburants qu'ils fournissent et pour établir les données afférentes.

Ces données sont communiquées chaque année au moyen du modèle figurant à l'annexe III et pour lequel l'Administration de l'environnement établit un modèle type sous forme électronique.

Pour les fournisseurs qui sont des petites et moyennes entreprises (PME), au sens de la recommandation 2003/361/CE de la Commission du 6 mai 2003 concernant la définition des micro, petites et moyennes entreprises, la méthode simplifiée énoncée à l'annexe I s'applique.

Les fournisseurs comparent les réductions d'émissions de gaz à effet de serre provenant des carburants et de l'électricité réalisées sur l'ensemble du cycle de vie à la norme de base concernant les carburants énoncée à l'annexe II. »

- Art. 11. A l'article 9 du même règlement, le paragraphe 5 est supprimé.
- Art. 12. A l'article 13 du même règlement, le paragraphe 1er est modifié comme suit :
- « (1) L'Administration de l'environnement contrôle le respect des exigences des articles 4 et 5 sur base des méthodes analytiques visées aux annexes I et II de la directive précitée 98/70/CE.

L'Administration de l'environnement met en place un système de surveillance de la qualité des carburants conformément aux prescriptions des normes européennes pertinentes. Un autre système de surveillance de la qualité des carburants peut être utilisé pour autant que ce dernier garantisse des résultats présentant une fiabilité équivalente. »

Art. 13. L'annexe I du même règlement est remplacée par une nouvelle annexe I formulée comme suit :

«ANNEXE I

MÉTHODE DE CALCUL ET DE DÉCLARATION DE L'INTENSITÉ D'ÉMISSION DE GAZ À EFFET DE SERRE SUR L'ENSEMBLE DU CYCLE DE VIE DES CARBURANTS ET DE L'ÉNERGIE, À L'INTENTION DES FOURNISSEURS

Partie 1

Calcul de l'intensité d'émission de gaz à effet de serre des carburants et de l'énergie d'un fournisseur

L'intensité d'émission de gaz à effet de serre des carburants et de l'énergie s'exprime en gramme équivalent dioxyde de carbone par mégajoule de carburant (gCO_{2ea}/MJ).

1. Les gaz à effet de serre pris en compte aux fins du calcul de l'intensité d'émission de gaz à effet de serre du carburant sont le dioxyde de carbone (CO_2) , le protoxyde d'azote (N_2O) et le méthane (CH_4) . Aux fins du calcul de l'équivalence en CO_2 , les émissions de ces gaz sont associées aux valeurs d'émissions suivantes, en équivalents CO_2 :

CO₂: 1; CH₄: 25; N₂O: 298

- 2. Les émissions résultant de la fabrication des machines et des équipements utilisés pour l'extraction, la production, le raffinage et la consommation de carburants fossiles ne doivent pas être prises en compte dans le calcul des émissions de gaz à effet de serre.
- 3. L'intensité d'émission de gaz à effet de serre sur l'ensemble du cycle de vie des émissions de gaz à effet de serre de tous les carburants et énergies fournis par un fournisseur se calcule selon la formule cidessous :

Intensité GES d'un fournisseur_(#) =
$$\frac{\sum_{x} (GHG_{i_x} \times AF \times MJ_x) - UER}{\sum_{x} MJ_x}$$

dans laquelle:

- «#» est l'identification du fournisseur (à savoir, l'identification de l'entité tenue de s'acquitter des droits d'accises) définie dans le règlement (CE) nº 684/2009 de la Commission comme le numéro d'accise de l'opérateur [numéro d'enregistrement du système d'échange des données relatives aux accises (SEED) ou numéro d'identification à la taxe sur la valeur ajoutée (TVA) visés à l'annexe I, tableau 1, point 5 a), dudit règlement pour les codes de type de destination 1 à 5 et 8 ; il s'agit également de l'entité redevable des droits d'accise conformément à l'article 8 de la directive 2008/118/CE du Conseil, au moment de la survenance de l'exigibilité des droits d'accise conformément à l'article 7, paragraphe 2, de la directive 2008/118/CE. Si cette identification n'est pas disponible, il est recouru à un moyen d'identification équivalent conformément à un dispositif national de déclaration des droits d'accise ;
 - b) «x» correspond aux types de carburants et d'énergie entrant dans le champ d'application du présent règlement, tels qu'ils figurent à l'annexe I, tableau 1, point 17 c), du règlement (CE) n° 684/2009. Si ces données ne sont pas disponibles, des données équivalentes sont recueillies conformément à un dispositif national de déclaration des droits d'accise;
 - c) «MJ_x» est l'énergie totale fournie et convertie à partir des volumes communiqués du carburant «x», exprimée en mégajoules. Ce calcul s'effectue comme suit :
 - i) La quantité de chaque carburant, par type de carburant

Elle se calcule sur la base des données déclarées conformément à l'annexe I, tableau 1, points 17 d), f) et o), du règlement (CE) no 684/2009. Les quantités de biocarburants sont converties à leur contenu énergétique (pouvoir calorifique inférieur) conformément aux densités d'énergie figurant à l'annexe III de la directive 2009/28/CE du Parlement européen et du Conseil du 23 avril 2009 relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables et modifiant puis abrogeant les directives 2001/77/CE et 2003/30/CE, telle que visée par l'article 9bis du règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides. Les quantités de carburants d'origine non biologique sont converties à leur contenu énergétique (pouvoir calorifique inférieur) conformément aux densités d'énergie indiquées à l'appendice 1 du rapport «Well-to-tank» (version 4) de juillet 2013 du consortium regroupant le Centre commun de recherche, EUCAR et Concawe (JEC) ;

ii) Cotraitement simultané de carburants fossiles et de biocarburants

Le traitement inclut toute modification apportée au cours du cycle de vie du carburant ou de l'énergie fournis, entraînant un changement de la structure moléculaire du produit. L'ajout d'un dénaturant ne constitue pas un traitement. La quantité de biocarburants cotraités avec des carburants d'origine non biologique reflète l'état des biocarburants à l'issue du procédé de production. La quantité du biocarburant cotraité est déterminée par le bilan énergétique et l'efficacité du procédé de cotraitement visé à l'annexe «Règles pour le calcul de l'impact sur les gaz à effet de serre des biocarburants, des bioliquides et des combustibles fossiles de référence », partie C, point 17 du règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides.

Lorsque plusieurs biocarburants sont mélangés avec des carburants fossiles, la quantité et le type de chaque biocarburant sont pris en compte dans le calcul et communiqués par les fournisseurs.

La quantité des biocarburants fournis qui ne satisfont pas aux critères de durabilité visés par le règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides est comptabilisée comme s'il s'agissait de carburant fossile.

Le mélange essence-éthanol E85 fera l'objet d'un calcul en tant que carburant distinct aux fins de l'article 6 du règlement (CE) no 443/2009 du Parlement européen et du Conseil.

Si les quantités ne sont pas recueillies conformément au règlement (CE) n° 684/2009, les données équivalentes sont recueillies conformément à un dispositif national de déclaration des droits d'accise ;

iii) Quantité d'électricité consommée

Il s'agit de la quantité d'électricité consommée par les véhicules routiers ou les motocycles qu'un fournisseur communique par à la formule suivante :

Électricité consommée

= distance parcourue (km) × efficacité de la consommation d'électricité (MJ/km)

d) Réduction des émissions en amont (UER)

«UER» est la réduction des émissions de gaz à effet de serre en amont déclarée par un fournisseur, mesurée en gCO_{2eq}, quantifiée et communiquée dans le respect des exigences suivantes :

i) Admissibilité

Les UER ne s'appliquent qu'à la partie des valeurs moyennes par défaut déterminées pour le pétrole, le diesel, le GNC ou le GPL qui correspond aux émissions en amont.

Les UER, quel que soit leur pays d'origine, peuvent être comptabilisées comme réductions des émissions de gaz à effet de serre pour les carburants produits à partir de toute source de matière de base fournie par un fournisseur.

Les UER ne sont comptabilisées que si elles sont liées à des projets ayant débuté après le 1er janvier 2011.

Il n'est pas nécessaire de prouver que les UER n'auraient pas eu lieu en l'absence des obligations de déclaration énoncées par le présent règlement;

ii) Calculs

Les UER sont estimées et validées conformément aux principes et aux normes internationales et notamment aux normes ISO 14064, ISO 14065 et ISO 14066.

Les UER et les émissions de référence devront être contrôlées, communiquées et vérifiées conformément à la norme ISO 14064 et les résultats fournis devront être d'une fiabilité équivalente à celle visée par le règlement (UE) n° 600/2012 de la Commission et le règlement (UE) n° 601/2012 de la Commission. La vérification des méthodes d'estimation des UER doit être conforme à la norme ISO 14064-3 et l'organisme chargé de la vérification doit être accrédité conformément à la norme ISO 14065;

- e) «GHGi_x» est l'intensité d'émission de gaz à effet de serre du carburant ou de l'énergie «x», exprimée en gCO_{2eq}/MJ. Les fournisseurs calculent l'intensité d'émission de gaz à effet de serre de chaque carburant ou énergie comme suit :
 - L'intensité d'émission de gaz à effet de serre de carburants d'origine non biologique est l'«intensité d'émission de gaz à effet de serre pondérée sur l'ensemble du cycle de vie» par type de carburant figurant dans la dernière colonne du tableau à la partie 2, point 5, de la présente annexe;
 - ii) L'électricité est calculée conformément à la partie 2, point 6;
 - iii) Intensité d'émission de gaz à effet de serre des biocarburants

L'intensité d'émission de gaz à effet de serre des biocarburants répondant aux critères de durabilité visés par le règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides se calcule conformément à l'article 10 dudit règlement. Lorsque les données relatives aux émissions de gaz à effet de serre des biocarburants sur l'ensemble du cycle de vie ont été obtenues dans le cadre d'un accord ou d'un système ayant fait l'objet d'une décision en vertu de l'article 8 du règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides couvrant l'article 3 dudit règlement, ces données sont également utilisées pour établir l'intensité d'émission de gaz à effet de serre des biocarburants au titre du chapitre II dudit règlement. L'intensité d'émission de gaz à effet de serre des biocarburants ne répondant pas aux critères de durabilité visés à l'article 2 du règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides est égale à l'intensité d'émission de gaz à effet de serre des carburants fossiles correspondants issus de pétrole brut ou de gaz conventionnels ;

iv) Cotraitement simultané de carburants d'origine non biologique et de biocarburants

L'intensité d'émission de gaz à effet de serre des biocarburants cotraités avec des carburants fossiles reflète l'état des biocarburants à l'issue du traitement ;

f) «AF» est le facteur d'ajustement pour l'efficacité du groupe motopropulseur :

Technologie de conversion prédominante	Facteur d'efficacité
Moteur à combustion interne	1
Groupe motopropulseur électrique à accumulateur	0,4
Groupe motopropulseur électrique à pile à combustible alimentée par hydrogène	0,4

Partie 2

Informations communiquées par les fournisseurs pour les carburants autres que les biocarburants

1. UER des carburants fossiles

Afin que les UER soient admissibles aux fins des méthodes de déclaration et de calcul, les fournisseurs communiquent à l'administration :

- a) la date de début du projet, qui doit être postérieure au 1er janvier 2011;
- b) les réductions annuelles d'émissions, en gCO_{2eq};
- c) la durée de la période au cours de laquelle les réductions déclarées se sont produites ;
- d) les coordonnées de l'emplacement du projet le plus proche de la source d'émissions, en degrés de latitude et de longitude arrondis à la quatrième décimale ;
- e) les émissions annuelles de référence avant la mise en place des mesures de réduction et les émissions annuelles après la mise en place des mesures de réduction, en gCO_{2eq}/MJ de matières de base produites;
- f) le numéro de certificat non réutilisable identifiant de manière unique le système et les réductions déclarées de gaz à effet de serre ;
- g) le numéro non réutilisable identifiant de manière unique la méthode de calcul et le système associé ;
- h) lorsque le projet concerne l'extraction de pétrole, le ratio gaz/pétrole en solution annuel moyen historique et pour l'année de déclaration, la pression et la profondeur du gisement, et le taux de production de pétrole brut du puits.

2. Origine

L'«origine» est la dénomination commerciale de la matière de base figurant à la partie 2, point 7, de la présente annexe, mais uniquement lorsque les fournisseurs détiennent l'information nécessaire :

- a) du fait qu'ils sont une personne ou entreprise qui effectue une importation de pétrole brut en provenance des pays tiers ou qui reçoit une livraison de pétrole brut en provenance d'un autre État membre, conformément à l'article 1^{er} du règlement (CE) n° 2964/95 du Conseil; ou
- en vertu de modalités d'échange d'informations convenues avec d'autres fournisseurs.
 Dans tous les autres cas, l'origine indique si le carburant est originaire de l'Union ou de pays tiers.

Les informations que les fournisseurs recueillent et communiquent concernant l'origine des carburants sont confidentielles mais cela n'interdit pas à la Commission de publier des informations générales ou synthétiques ne comportant pas d'indications sur les entreprises individuellement.

Pour les biocarburants, l'origine signifie la filière de production des biocarburants figurant à l'annexe «Règles pour le calcul de l'impact sur les gaz à effet de serre des biocarburants, des bioliquides et des combustibles fossiles de référence » du règlement grand-ducal modifié du 27 février 2011 fixant les critères de durabilité pour les biocarburants et bioliquides.

Lorsque plusieurs matières de base sont utilisées, les fournisseurs communiquent la quantité en tonnes métriques du produit fini pour chaque matière de base produite dans l'installation de traitement correspondante au cours de l'année de déclaration.

3. Lieu d'achat

Le «lieu d'achat» est le pays et le nom de l'installation de traitement où le carburant ou l'énergie a subi sa dernière transformation substantielle, utilisés pour conférer son origine au carburant ou à l'énergie conformément au règlement (CEE) n° 2454/93 de la Commission.

4. PME

Par dérogation, dans le cas des fournisseurs qui sont des PME, l'«origine» et le «lieu d'achat» sont soit l'Union soit un pays tiers, selon le cas, que ces fournisseurs importent du pétrole brut ou qu'ils fournissent des huiles de pétrole et des huiles de matières bitumineuses.

5. Valeurs moyennes par défaut d'intensité d'émission de gaz à effet de serre sur l'ensemble du cycle de vie en ce qui concerne les carburants autres que les biocarburants et l'électricité

Source de matières premières et procédé	Type de carburant mis sur le marché	Intensité d'émission de gaz à effet de serre unitaire sur l'ensemble du cycle de vie (gCO _{2eq} /MJ)	Intensité d'émission de gaz à effet de serre pondérée sur l'ensemble du cycle de vie (gCO _{2eq} /MJ)
Pétrole brut conventionnel	Essence	93,2	
Gaz naturel liquéfié		94,3	93,3
Charbon liquéfié		172	

Source de matières premières et procédé -	Type de carburant mis sur le marché	Intensité d'émission de gaz à effet de serre unitaire sur l'ensemble du cycle de vie (gCO _{2eq} /MJ)	Intensité d'émission de gaz à effet de serre pondérée sur l'ensemble du cycle de vie (gCO _{2eq} /MJ)
Bitume naturel		107	
Schistes bitumineux		131,3	
Pétrole brut conventionnel	Diesel ou gazole	95	
Gaz naturel liquéfié		94,3	
Charbon liquéfié		172	95,1
Bitume naturel		108,5	
Schistes bitumineux		133,7	
Toute source fossile	Gaz de pétrole liquéfié pour moteur à allumage commandé	73,6	73,6
Gaz naturel, mélange UE	Gaz naturel comprimé pour moteur à allumage commandé	69,3	69,3
Gaz naturel, mélange UE	Gaz naturel liquéfié pour moteur à allumage commandé	74,5	74,5
Réaction de Sabatier utilisant l'hydrogène produit par hydrolyse à l'aide d'énergies renouvelables non biologiques	Méthane de synthèse comprimé pour moteur à allumage commandé	3,3	3,3
Gaz naturel par vaporeformage	Hydrogène comprimé dans une pile à combustible	104,3	104,3
Électrolyse utilisant exclusivement des énergies renouvelables non biologiques	Hydrogène comprimé dans une pile à combustible	9,1	9,1
Charbon	Hydrogène comprimé dans une pile à combustible	234,4	234,4
Charbon avec captage et stockage du carbone	Hydrogène comprimé dans une pile à	52,7	52,7

Source de matières premières et procédé	Type de carburant mis sur le marché	Intensité d'émission de gaz à effet de serre unitaire sur l'ensemble du cycle de vie (gCO _{2eq} /MJ)	Intensité d'émission de gaz à effet de serre pondérée sur l'ensemble du cycle de vie (gCO _{2eq} /MJ)
des émissions du procédé	combustible		
Déchets plastiques issus de matières de base fossiles	Pétrole, diesel ou gazole	86	86

6. Électricité

Aux fins de la déclaration par les fournisseurs d'énergie de l'électricité consommée par les véhicules électriques et les motocycles, les valeurs nationales moyennes par défaut sont calculées sur l'ensemble du cycle de vie conformément aux normes internationales en la matière.

Leurs fournisseurs peuvent déterminer des valeurs d'intensité d'émission de gaz à effet de serre (en gCO_{2eq}/MJ) de l'électricité à partir des données communiquées au titre des règlements suivants :

- a) règlement (CE) nº 1099/2008 du Parlement européen et du Conseil ;
- b) règlement (UE) n° 525/2013 du Parlement européen et du Conseil ; ou c) règlement délégué (UE) n° 666/2014 de la Commission.

7. Dénomination commerciale de la matière de base

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Abu Dhabi	Al Bunduq	38.5	1.1
Abu Dhabi	Mubarraz	38.1	0.9
Abu Dhabi	Murban	40.5	0.8
Abu Dhabi	Zakum (Lower Zakum/Abu Dhabi Marine)	40.6	1
Abu Dhabi	Umm Shaif (Abu Dhabi Marine)	37.4	1.5
Abu Dhabi	Arzanah	44	0
Abu Dhabi	Abu Al Bu Khoosh	31.6	2

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Abu Dhabi	Murban Bottoms	21.4	Non disponible (n.d.)
Abu Dhabi	Top Murban	21	n.d.
Abu Dhabi	Upper Zakum	34.4	1.7
Algérie	Arzew	44.3	0.1
Algérie	Hassi Messaoud	42.8	0.2
Algérie	Zarzaitine	43	0.1
Algérie	Algerian	44	0.1
Algérie	Skikda	44.3	0.1
Algérie	Saharan Blend	45.5	0.1
Algérie	Hassi Ramal	60	0.1
Algérie	Algerian Condensate	64.5	n.d.
Algérie	Algerian Mix	45.6	0.2
Algérie	Algerian Condensate (Arzew)	65.8	0
Algérie	Algerian Condensate (Bejaia)	65.0	0
Algérie	Top Algerian	24.6	n.d.
Angola	Cabinda	31.7	0.2
Angola	Takula	33.7	0.1
Angola	Soyo Blend	33.7	0.2
Angola	Mandji	29.5	1.3
Angola	Malongo (West)	26	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Angola	Cavala-1	42.3	n.d.
Angola	Sulele (South-1)	38.7	n.d.
Angola	Palanca	40	0.14
Angola	Malongo (North)	30	n.d.
Angola	Malongo (South)	25	n.d.
Angola	Nemba	38.5	0
Angola	Girassol	31.3	n.d.
Angola	Kuito	20	n.d.
Angola	Hungo	28.8	n.d.
Angola	Kissinje	30.5	0.37
Angola	Dalia	23.6	1.48
Angola	Gimboa	23.7	0.65
Angola	Mondo	28.8	0.44
Angola	Plutonio	33.2	0.036
Angola	Saxi Batuque Blend	33.2	0.36
Angola	Xikomba	34.4	0.41
Arabie saoudite	Light (Pers. Gulf)	33.4	1.8
Arabie saoudite	Heavy (Pers. Gulf) (Safaniya)	27.9	2.8
Arabie saoudite	Medium (Pers. Gulf) (Khursaniyah)	30.8	2.4
Arabie saoudite	Extra Light (Pers. Gulf) (Berri)	37.8	1.1

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Arabie saoudite	Light (Yanbu)	33.4	1.2
Arabie saoudite	Heavy (Yanbu)	27.9	2.8
Arabie saoudite	Medium (Yanbu)	30.8	2.4
Arabie saoudite	Berri (Yanbu)	37.8	1.1
Arabie saoudite	Medium (Zuluf/Marjan)	31.1	2.5
Argentina	Tierra del Fuego	42.4	n.d.
Argentina	Santa Cruz	26.9	n.d.
Argentina	Escalante	24	0.2
Argentina	Canadon Seco	27	0.2
Argentina	Hidra	51.7	0.05
Argentina	Medanito	34.93	0.48
Arménie	Armenian Miscellaneous	n.d.	n.d.
Australie	Jabiru	42.3	0.03
Australie	Kooroopa (Jurassic)	42	n.d.
Australie	Talgeberry (Jurassic)	43	n.d.
Australie	Talgeberry (Up Cretaceous)	51	n.d.
Australie	Woodside Condensate	51.8	n.d.
Australie	Saladin-3 (Top Barrow)	49	n.d.
Australie	Harriet	38	n.d.
Australie	Skua-3 (Challis Field)	43	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Australie	Barrow Island	36.8	0.1
Australie	Northwest Shelf Condensate	53.1	0
Australie	Jackson Blend	41.9	0
Australie	Cooper Basin	45.2	0.02
Australie	Griffin	55	0.03
Australie	Buffalo Crude	53	n.d.
Australie	Cossack	48.2	0.04
Australie	Elang	56.2	n.d.
Australie	Enfield	21.7	0.13
Australie	Gippsland (Bass Strait)	45.4	0.1
Azerbaïdjan	Azeri Light	34.8	0.15
Bahreïn	Bahrain Miscellaneous	n.d.	n.d.
Belize	Belize Light Crude	40	n.d.
Belize	Belize Miscellaneous	n.d.	n.d.
Bénin	Seme	22.6	0.5
Bénin	Benin Miscellaneous	n.d.	n.d.
Biélorussie	Belarus Miscellaneous	n.d.	n.d.
Bolivie	Bolivian Condensate	58.8	0.1
Brésil	Garoupa	30.5	0.1
Brésil	Sergipano	25.1	0.4

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Brésil	Campos Basin	20	n.d.
Brésil	Urucu (Upper Amazon)	42	n.d.
Brésil	Marlim	20	n.d.
Brésil	Brazil Polvo	19.6	1.14
Brésil	Roncador	28.3	0.58
Brésil	Roncador Heavy	18	n.d.
Brésil	Albacora East	19.8	0.52
Brunei	Seria Light	36.2	0.1
Brunei	Champion	24.4	0.1
Brunei	Champion Condensate	65	0.1
Brunei	Brunei LS Blend	32	0.1
Brunei	Brunei Condensate	65	n.d.
Brunei	Champion Export	23.9	0.12
Cameroun	Kole Marine Blend	34.9	0.3
Cameroun	Lokele	21.5	0.5
Cameroun	Moudi Light	40	n.d.
Cameroun	Moudi Heavy	21.3	n.d.
Cameroun	Ebome	32.1	0.35
Cameroun	Cameroon Miscellaneous	n.d.	n.d.
Canada	Peace River Light	41	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Canada	Peace River Medium	33	n.d.
Canada	Peace River Heavy	23	n.d.
Canada	Manyberries	36.5	n.d.
Canada	Rainbow Light and Medium	40.7	n.d.
Canada	Pembina	33	n.d.
Canada	Bells Hill Lake	32	n.d.
Canada	Fosterton Condensate	63	n.d.
Canada	Rangeland Condensate	67.3	n.d.
Canada	Redwater	35	n.d.
Canada	Lloydminster	20.7	2.8
Canada	Wainwright- Kinsella	23.1	2.3
Canada	Bow River Heavy	26.7	2.4
Canada	Fosterton	21.4	3
Canada	Smiley-Coleville	22.5	2.2
Canada	Midale	29	2.4
Canada	Milk River Pipeline	36	1.4
Canada	Ipl-Mix Sweet	40	0.2
Canada	Ipl-Mix Sour	38	0.5
Canada	Ipl Condensate	55	0.3
Canada	Aurora Light	39.5	0.4

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Canada	Aurora Condensate	65	0.3
Canada	Reagan Field	35	0.2
Canada	Synthetic Canada	30.3	1.7
Canada	Cold Lake	13.2	4.1
Canada	Cold Lake Blend	26.9	3
Canada	Canadian Federated	39.4	0.3
Canada	Chauvin	22	2.7
Canada	Gcos	23	n.d.
Canada	Gulf Alberta L & M	35.1	1
Canada	Light Sour Blend	35	1.2
Canada	Lloyd Blend	22	2.8
Canada	Peace River Condensate	54.9	n.d.
Canada	Sarnium Condensate	57.7	n.d.
Canada	Saskatchewan Light	32.9	n.d.
Canada	Sweet Mixed Blend	38	0.5
Canada	Syncrude	32	0.1
Canada	Rangeland – South L & M	39.5	0.5
Canada	Northblend Nevis	34	n.d.
Canada	Canadian Common Condensate	55	n.d.
Canada	Canadian Common	39	0.3

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Canada	Waterton Condensate	65.1	n.d.
Canada	Panuke Condensate	56	n.d.
Canada	Federated Light and Medium	39.7	2
Canada	Wabasca	23	n.d.
Canada	Hibernia	37.3	0.37
Canada	BC Light	40	n.d.
Canada	Boundary	39	n.d.
Canada	Albian Heavy	21	n.d.
Canada	Koch Alberta	34	n.d.
Canada	Terra Nova	32.3	n.d.
Canada	Echo Blend	20.6	3.15
Canada	Western Canadian Blend	19.8	3
Canada	Western Canadian Select	20.5	3.33
Canada	White Rose	31.0	0.31
Canada	Access	22	n.d.
Canada	Premium Albian Synthetic Heavy	20.9	n.d.
Canada	Albian Residuum Blend (ARB)	20.03	2.62
Canada	Christina Lake	20.5	3
Canada	CNRL	34	n.d.
Canada	Husky Synthetic Blend	31.91	0.11

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Canada	Premium Albian Synthetic (PAS)	35.5	0.04
Canada	Seal Heavy(SH)	19.89	4.54
Canada	Suncor Synthetic A (OSA)	33.61	0.178
Canada	Suncor Synthetic H (OSH)	19.53	3.079
Canada	Peace Sour	33	n.d.
Canada	Western Canadian Resid	20.7	n.d.
Canada	Christina Dilbit Blend	21.0	n.d.
Canada	Christina Lake Dilbit	38.08	3.80
Charjah	Mubarek. Sharjah	37	0.6
Charjah	Sharjah Condensate	49.7	0.1
Chili	Chile Miscellaneous	n.d.	n.d.
Chine	Taching (Daqing)	33	0.1
Chine	Shengli	24.2	1
Chine	Beibu	n.d.	n.d.
Chine	Chengbei	17	n.d.
Chine	Lufeng	34.4	n.d.
Chine	Xijiang	28	n.d.
Chine	Wei Zhou	39.9	n.d.
Chine	Liu Hua	21	n.d.
Chine	Boz Hong	17	0.282

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Chine	Peng Lai	21.8	0.29
Chine	Xi Xiang	32.18	0.09
Colombie	Onto	35.3	0.5
Colombie	Putamayo	35	0.5
Colombie	Rio Zulia	40.4	0.3
Colombie	Orito	34.9	0.5
Colombie	Cano-Limon	30.8	0.5
Colombie	Lasmo	30	n.d.
Colombie	Cano Duya-1	28	n.d.
Colombie	Corocora-1	31.6	n,d.
Colombie	Suria Sur-1	32	n.d.
Colombie	Tunane-1	29	n.d.
Colombie	Casanare	23	n.d.
Colombie	Cusiana	44.4	0.2
Colombie	Vasconia	27.3	0.6
Colombie	Castilla Blend	20.8	1.72
Colombie	Cupiaga	43.11	0.082
Colombie	South Blend	28.6	0.72
Congo (Brazzaville)	Emeraude	23.6	0.5
Congo (Brazzaville)	Djeno Blend	26.9	0.3

Pays	Dénomination commerciale de la matière de base	АРІ	Soufre (% massique
Congo (Brazzaville)	Viodo Marina-1	26.5	n.d.
Congo (Brazzaville)	Nkossa	47	0.03
Congo (Kinshasa)	Muanda	34	0.1
Congo (Kinshasa)	Congo/Zaire	31.7	0.1
Congo (Kinshasa)	Coco	30.4	0.15
Cote d'Ivoire	Espoir	31.4	0.3
Cote d'Ivoire	Lion Cote	41.1	0.101
Danemark	Dan	30.4	0.3
Danemark	Gorm	33.9	0.2
Danemark	Danish North Sea	34.5	0.26
Dubaï	Dubai (Fateh)	31.1	2
Dubaï	Margham Light	50.3	0
Égypte	Belayim	27.5	2.2
Égypte	El Morgan	29.4	1.7
Égypte	Rhas Gharib	24.3	3.3
Égypte	Gulf of Suez Mix	31.9	1.5
Égypte	Geysum	19.5	n.d.
Égypte	East Gharib (J-1)	37.9	n.d.
Égypte	Mango-1	35.1	n.d.
Égypte	Rhas Budran	25	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Égypte	Zeit Bay	34.1	0.1
Égypte	East Zeit Mix	39	0.87
Équateur	Oriente	29.2	1
Équateur	Quito	29.5	0.7
Équateur	Santa Elena	35	0.1
Équateur	Limoncoha-1	28	n.d.
Équateur	Frontera-1	30.7	n.d.
Équateur	Bogi-1	21.2	n.d.
Équateur	Napo	19	2
Équateur	Napo Light	19.3	n.d.
Espagne	Amposta Marina North	37	n.d.
Espagne	Casablanca	34	n.d.
Espagne	El Dorado	26.6	n.d.
États-Unis Alaska	ANS	n.d.	n.d.
États-Unis Colorado	Niobrara	n.d.	n.d.
États-Unis New Mexico	Four Corners	n.d.	n.d.
États-Unis North Dakota	Bakken	n.d.	n.d.
États-Unis North Dakota	North Dakota Sweet	n.d.	n.d.
tats-Unis Texas	WTI	n.d.	n.d.
États-Unis Texas	Eagle Ford	n.d.	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
États-Unis Utah	Covenant	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Beta	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Carpinteria	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Dos Cuadras	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Hondo	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Hueneme	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Pescado	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Point Arguello	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Point Pedernales	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Sacate	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Santa Clara	n.d.	n.d.
États-Unis marge du plateau continental nord-américain	Sockeye	n.d.	n.d.
Gabon	Gamba	31.8	0.1
Gabon	Mandji	30.5	1.1
Gabon	Lucina Marine	39.5	0.1
Gabon	Oguendjo	35	n.d.
Gabon	Rabi-Kouanga	34	0.6
Gabon	T'Catamba	44.3	0.21
Gabon	Rabi	33.4	0.06
Gabon	Rabi Blend	34	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Gabon	Rabi Light	37.7	0.15
Gabon	Etame Marin	36	n.d.
Gabon	Olende	17.6	1.54
Gabon	Gabonian Miscellaneous	n.d.	n.d.
Géorgie	Georgian Miscellaneous	n.d.	n.d.
Ghana	Bonsu	32	0.1
Ghana	Salt Pond	37.4	0.1
Guatemala	Coban	27.7	n.d.
Guatemala	Rubelsanto	27	n.d.
Guinée équatoriale	Zafiro	30.3	n.d.
Guinée équatoriale	Alba Condensate	55	n.d.
Guinée équatoriale	Ceiba	30.1	0.42
Inde	Bombay High	39.4	0.2
Indonésie	Minas (Sumatron Light)	34.5	0.1
Indonésie	Ardjuna	35.2	0.1
Indonésie	Attaka	42.3	0.1
ndonésie	Suri	18.4	0.2
ndonésie	Sanga Sanga	25.7	0.2
ndonésie	Sepinggan	37.9	0.9
ndonésie	Walio	34.1	0.7

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Indonésie	Arimbi	31.8	0.2
Indonésie	Poleng	43.2	0.2
Indonésie	Handil	32.8	0.1
Indonésie	Jatibarang	29	0.1
Indonésie	Cinta	33.4	0.1
Indonésie	Bekapai	40	0.1
Indonésie	Katapa	52	0.1
Indonésie	Salawati	38	0.5
Indonésie	Duri (Sumatran Heavy)	21.1	0.2
Indonésie	Sembakung	37.5	0.1
Indonésie	Badak	41.3	0.1
Indonésie	Arun Condensate	54.5	n.d.
Indonésie	Udang	38	0.1
Indonésie	Klamono	18.7	1
Indonésie	Bunya	31.7	0.1
Indonésie	Pamusian	18.1	0.2
Indonésie	Kerindigan	21.6	0.3
Indonésie	Melahin	24.7	0.3
ndonésie	Bunyu	31.7	0.1
ndonésie	Camar	36.3	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Indonésie	Cinta Heavy	27	n.d.
Indonésie	Lalang	40.4	n.d.
Indonésie	Kakap	46.6	n.d.
Indonésie	Sisi-1	40	n.d.
Indonésie	Giti-1	33.6	n.d.
Indonésie	Ayu-1	34.3	n.d.
Indonésie	Bima	22.5	n.d.
Indonésie	Padang Isle	34.7	n.d.
Indonésie	Intan	32.8	n.d.
Indonésie	Sepinggan - Yakin Mixed	31.7	0.1
Indonésie	Widuri	32	0.1
Indonésie	Belida	45.9	0
Indonésie	Senipah	51.9	0.03
Iran	Iranian Light	33.8	1.4
ran	Iranian Heavy	31	1.7
ran	Soroosh (Cyrus)	18.1	3.3
ran	Dorrood (Darius)	33.6	2.4
ran	Rostam	35.9	1.55
ran	Salmon (Sassan)	33.9	1.9
ran	Foroozan (Fereidoon)	31.3	2.5

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Iran	Aboozar (Ardeshir)	26.9	2.5
Iran	Sirri	30.9	2.3
Iran	Bahrgansar/Nowruz (SIRIP Blend)	27.1	2.5
Iran	Bahr/Nowruz	25.0	2.5
Iran	Iranian Miscellaneous	n.d.	n.d.
Iraq	Basrah Light (Pers. Gulf)	33.7	2
Iraq	Kirkuk (Pers. Gulf)	35.1	1.9
Iraq	Mishrif (Pers. Gulf)	28	n.d.
Iraq	Bai Hasson (Pers. Gulf)	34.1	2.4
Iraq	Basrah Medium (Pers. Gulf)	31.1	2.6
Iraq	Basrah Heavy (Pers. Gulf)	24.7	3.5
Iraq	Kirkuk Blend (Pers. Gulf)	35.1	2
Iraq	N. Rumalia (Pers. Gulf)	34.3	2
Iraq	Ras el Behar	33	n.d.
Iraq	Basrah Light (Red Sea)	33.7	2
lraq	Kirkuk (Red Sea)	36.1	1.9
raq	Mishrif (Red Sea)	28	n.d.
raq	Bai Hasson (Red Sea)	34.1	2.4
raq	Basrah Medium (Red Sea)	31.1	2.6
raq	Basrah Heavy (Red Sea)	24.7	3.5

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Iraq	Kirkuk Blend (Red Sea)	34	1.9
Iraq	N. Rumalia (Red Sea)	34.3	2
Iraq	Ratawi	23.5	4.1
Iraq	Basrah Light (Turkey)	33.7	2
Iraq	Kirkuk (Turkey)	36.1	1.9
Iraq	Mishrif (Turkey)	28	n.d.
Iraq	Bai Hasson (Turkey)	34.1	2.4
Iraq	Basrah Medium (Turkey)	31.1	2.6
Iraq	Basrah Heavy (Turkey)	24.7	3.5
Iraq	Kirkuk Blend (Turkey)	34	1.9
Iraq	N. Rumalia (Turkey)	34.3	2
Iraq	FAO Blend	27.7	3.6
Kazakhstan	Kumkol	42.5	0.07
Kazakhstan	CPC Blend	44.2	0.54
Koweït	Mina al Ahmadi (Kuwait Export)	31.4	2.5
Koweït	Magwa (Lower Jurassic)	38	n.d.
Koweït	Burgan (Wafra)	23.3	3.4
ibye	Bu Attifel	43.6	0
ibye	Amna (high pour)	36.1	0.2
ibye	Brega	40.4	0.2

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Libye	Sirtica	43.3	0.43
Libye	Zueitina	41.3	0.3
Libye	Bunker Hunt	37.6	0.2
Libye	El Hofra	42.3	0.3
Libye	Dahra	41	0.4
Libye	Sarir	38.3	0.2
Libye	Zueitina Condensate	65	0.1
Libye	El Sharara	42.1	0.07
Malaisie	Miri Light	36.3	0.1
Malaisie	Tembungo	37.5	n.d.
Malaisie	Labuan Blend	33.2	0.1
Malaisie	Tapis	44.3	0.1
Malaisie	Tembungo	37.4	0
Malaisie	Bintulu	26.5	0.1
Malaisie	Bekok	49	n.d.
Malaisie	Pulai	42.6	n.d.
Malaisie	Dulang	39	0.037
Mauritanie	Chinguetti	28.2	0.51
Mexique	Isthmus	32.8	1.5
Mexique	Maya	22	3.3

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Mexique	Olmeca	39	n.d.
Mexique	Altamira	16	n.d.
Mexique	Topped Isthmus	26.1	1.72
Nigeria	Forcados Blend	29.7	0.3
Nigeria	Escravos	36.2	0.1
Nigeria	Brass River	40.9	0.1
Nigeria	Qua Iboe	35.8	0.1
Nigeria	Bonny Medium	25.2	0.2
Nigeria	Pennington	36.6	0.1
Nigeria	Bomu	33	0.2
Nigeria	Bonny Light	36.7	0.1
Nigeria	Brass Blend	40.9	0.1
Nigeria	Gilli Gilli	47.3	n.d.
Nigeria	Adanga	35.1	n.d.
Nigeria	Iyak-3	36	n.d.
Nigeria	Antan	35.2	n.d.
Nigeria	oso	47	0.06
Nigeria	Ukpokiti	42.3	0.01
Nigeria	Yoho	39.6	n.d.
Nigeria	Okwori	36.9	n.d.

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Nigeria	Bonga	28.1	n.d.
Nigeria	ERHA	31.7	0.21
Nigeria	Amenam Blend	39	0.09
Nigeria	Akpo	45.17	0.06
Nigeria	EA	38	n.d.
Nigeria	Agbami	47.2	0.044
Norvège	Ekofisk	43.4	0.2
Norvège	Tor	42	0.1
Norvège	Statfjord	38.4	0.3
Norvège	Heidrun	29	n.d.
Norvège	Norwegian Forties	37.1	n.d.
Norvège	Gullfaks	28.6	0.4
Norvège	Oseberg	32.5	0.2
Norvège	Norne	33.1	0.19
Norvège	Troll	28.3	0.31
Norvège	Draugen	39.6	n.d.
Norvège	Sleipner Condensate	62	0.02
Oman	Oman Export	36.3	0.8
Ouzbékistan	Uzbekistan Miscellaneous	n.d.	n.d.
Papousie-Nouvelle-Guinée	Kutubu	44	0.04

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Pays-Bas	Alba	19.59	n.d.
Pérou	Loreto	34	0.3
Pérou	Talara	32.7	0.1
Pérou	High Cold Test	37.5	n.d.
Pérou	Bayovar	22.6	n.d.
Pérou	Low Cold Test	34.3	n.d.
Pérou	Carmen Central-5	20.7	n.d.
Pérou	Shiviyacu-23	20.8	n.d.
Pérou	Mayna	25.7	n.d.
Philippines	Nido	26.5	n.d.
Philippines	Philippines Miscellaneous	n.d.	n.d.
Qatar	Dukhan	41.7	1.3
Qatar	Qatar Marine	35.3	1.6
Qatar	Qatar Land	41.4	n.d.
Ras Al Khaïmah	Rak Condensate	54.1	n.d.
Ras Al Khaïmah	Ras Al Khaimah Miscellaneous	n.d.	n.d.
Royaume-Uni	Auk	37.2	0.5
Royaume-Uni	Beatrice	38.7	0.05
Royaume-Uni	Brae	33.6	0.7
Royaume-Uni	Buchan	33.7	0.8

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Royaume-Uni	Claymore	30.5	1.6
Royaume-Uni	S.V. (Brent)	36.7	0.3
Royaume-Uni	Tartan	41.7	0.6
Royaume-Uni	Tern	35	0.7
Royaume-Uni	Magnus	39.3	0.3
Royaume-Uni	Dunlin	34.9	0.4
Royaume-Uni	Fulmar	40	0.3
Royaume-Uni	Hutton	30.5	0.7
Royaume-Uni	N.W. Hutton	36.2	0.3
Royaume-Uni	Maureen	35.5	0.6
Royaume-Uni	Murchison	38.8	0.3
Royaume-Uni	Ninian Blend	35.6	0.4
Royaume-Uni	Montrose	40.1	0.2
Royaume-Uni	Beryl	36.5	0.4
Royaume-Uni	Piper	35.6	0.9
Royaume-Uni	Forties	36.6	0.3
Royaume-Uni	Brent Blend	38	0.4
Royaume-Uni	Flotta	35.7	1.1
Royaume-Uni	Thistle	37	0.3
Royaume-Uni	S.V. (Ninian)	38	0.3

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Royaume-Uni	Argyle	38.6	0.2
Royaume-Uni	Heather	33.8	0.7
Royaume-Uni	South Birch	38.6	n.d.
Royaume-Uni	Wytch Farm	41.5	n.d.
Royaume-Uni	Cormorant. North	34.9	0.7
Royaume-Uni	Cormorant. South (Cormorant "A")	35.7	0.6
Royaume-Uni	Alba	19.2	n.d.
Royaume-Uni	Foinhaven	26.3	0.38
Royaume-Uni	Schiehallion	25.8	n.d.
Royaume-Uni	Captain	19.1	0.7
Royaume-Uni	Harding	20.7	0.59
Russie	Urals	31	2
Russie	Russian Export Blend	32.5	1.4
Russie	M100	17.6	2.02
Russie	M100 Heavy	16.67	2.09
Russie	Siberian Light	37.8	0.4
Russie	E4 (Gravenshon)	19.84	1.95
Russie	E4 Heavy	18	2.35
Russie	Purovsky Condensate	64.1	0.01
Russie	Sokol	39.7	0.18

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Singapore	Rantau	50.5	0.1
Syrie	Syrian Straight	15	n.d.
Syrie	Thayyem	35	n.d.
Syrie	Omar Blend	38	n.d.
Syrie	Omar	36.5	0.1
Syrie	Syrian Light	36	0.6
Syrie	Souedie	24.9	3.8
Tchad	Doba Blend (Early Production)	24.8	0.14
Tchad	Doba Blend (Later Production)	20.8	0.17
Thaïlande	Erawan Condensate	54.1	n.d.
Thaïlande	Sirikit	41	n.d.
Thaïlande	Nang Nuan	30	n.d.
Thaïlande	Bualuang	27	n.d.
Thaïlande	Benchamas	42.4	0.12
Trinité-et-Tobago	Galeota Mix	32.8	0.3
Trinité-et-Tobago	Trintopec	24.8	n.d.
Trinité-et-Tobago	Land/Trinmar	23.4	1.2
Trinité-et-Tobago	Calypso Miscellaneous	30.84	0.59
Tunisie	Zarzaitine	41.9	0.1
Tunisie	Ashtart	29	1

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Tunisie	El Borma	43.3	0.1
Tunisie	Ezzaouia-2	41.5	n.d.
Turquie	Turkish Miscellaneous	n.d.	n.d.
Ukraine	Ukraine Miscellaneous	n.d.	n.d.
Venezuela	Jobo (Monagas)	12.6	2
Venezuela	Lama Lamar	36.7	1
Venezuela	Mariago	27	1.5
Venezuela	Ruiz	32.4	1.3
Venezuela	Tucipido	36	0.3
Venezuela	Venez Lot 17	36.3	0.9
Venezuela	Mara 16/18	16.5	3.5
Venezuela	Tia Juana Light	32.1	1.1
Venezuela	Tia Juana Med 26	24.8	1.6
Venezuela	Officina	35.1	0.7
Venezuela	Bachaquero	16.8	2.4
Venezuela	Cento Lago	36.9	1.1
/enezuela	Lagunillas	17.8	2.2
/enezuela	La Rosa Medium	25.3	1.7
/enezuela	San Joaquin	42	0.2
/enezuela	Lagotreco	29.5	1.3

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Venezuela	Lagocinco	36	1.1
Venezuela	Boscan	10.1	5.5
Venezuela	Leona	24.1	1.5
Venezuela	Barinas	26.2	1.8
Venezuela	Sylvestre	28.4	1
Venezuela	Mesa	29.2	1.2
Venezuela	Ceuta	31.8	1.2
Venezuela	Lago Medio	31.5	1.2
Venezuela	Tigre	24.5	n.d.
Venezuela	Anaco Wax	41.5	0.2
Venezuela	Santa Rosa	49	0.1
Venezuela	Bombai	19.6	1.6
Venezuela	Aguasay	41.1	0.3
Venezuela	Anaco	43.4	0.1
Venezuela	BCF-Bach/Lag17	16.8	2.4
Venezuela	BCF-Bach/Lag21	20.4	2.1
Venezuela	BCF-21.9	21.9	n.d.
Venezuela	BCF-24	23.5	1.9
Venezuela	BCF-31	31	1.2
Venezuela	BCF Blend	34	1

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Venezuela	Bolival Coast	23.5	1.8
Venezuela	Ceuta/Bach 18	18.5	2.3
Venezuela	Corridor Block	26.9	1.6
Venezuela	Cretaceous	42	0.4
Venezuela	Guanipa	30	0.7
Venezuela	Lago Mix Med.	23.4	1.9
Venezuela	Larosa/Lagun	23.8	1.8
Venezuela	Menemoto	19.3	2.2
Venezuela	Cabimas	20.8	1.8
Venezuela	BCF-23	23	1.9
Venezuela	Oficina/Mesa	32.2	0.9
Venezuela	Pilon	13.8	2
Venezuela	Recon (Venez)	34	n.d.
Venezuela	102 Tj (25)	25	1.6
Venezuela .	Tjl Cretaceous	39	0.6
Venezuela	Tia Juana Pesado (Heavy)	12.1	2.7
√enezuela	Mesa-Recon	28.4	1.3
/enezuela	Oritupano	19	2
/enezuela	Hombre Pintado	29.7	0.3
/enezuela	Merey	17.4	2.2

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Venezuela	Lago Light	41.2	0.4
Venezuela	Laguna	11.2	0.3
Venezuela	Bach/Cueta Mix	24	1.2
Venezuela	Bachaquero 13	13	2.7
Venezuela	Ceuta – 28	28	1.6
Venezuela	Temblador	23.1	0.8
Venezuela	Lagomar	32	1.2
Venezuela	Taparito	17	n.d.
Venezuela	BCF-Heavy	16.7	n.d.
Venezuela	BCF-Medium	22	n.d.
Venezuela	Caripito Blend	17.8	n.d.
Venezuela	Laguna/Ceuta Mix	18.1	n.d.
Venezuela	Morichal	10.6	n.d.
Venezuela	Pedenales	20.1	n.d.
Venezuela	Quiriquire	16.3	n.d.
Venezuela	Tucupita	17	n.d.
Venezuela	Furrial-2 (E. Venezuela)	27	n.d.
Venezuela	Curazao Blend	18	n.d.
/enezuela	Santa Barbara	36.5	n.d.
Venezuela	Cerro Negro	15	n.d.

4 7 3

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique
Venezuela	BCF22	21.1	2.11
Venezuela	Hamaca	26	1.55
Venezuela	Zuata 10	15	n.d.
Venezuela	Zuata 20	25	n.d.
Venezuela	Zuata 30	35	n.d.
Venezuela	Monogas	15.9	3.3
Venezuela	Corocoro	24	n.d.
Venezuela	Petrozuata	19.5	2.69
Venezuela	Morichal 16	16	n.d.
Venezuela	Guafita	28.6	0.73
Viêt Nam	Bach Ho (White Tiger)	38.6	0
Viêt Nam	Dai Hung (Big Bear)	36.9	0.1
Viêt Nam	Rang Dong	37.7	0.5
Viêt Nam	Ruby	35.6	0.08
Viêt Nam	Su Tu Den (Black Lion)	36.8	0.05
/émen	North Yemeni Blend	40.5	n.d.
/émen	Alif	40.4	0.1
/émen	Maarib Lt.	49	0.2
ڎmen	Masila Blend	30-31	0.6
/émen	Shabwa Blend	34.6	0.6

Pays	Dénomination commerciale de la matière de base	API	Soufre (% massique)
Zone neutre	Eocene (Wafra)	18.6	4.6
Zone neutre	Hout	32.8	1.9
Zone neutre	Khafji	28.5	2.9
Zone neutre	Burgan (Wafra)	23.3	3.4
Zone neutre	Ratawi	23.5	4.1
Zone neutre	Neutral Zone Mix	23.1	n.d.
Zone neutre	Khafji Blend	23.4	3.8
Autre	Huile de schiste	n.d.	n.d.
Autre	Schistes bitumineux	n.d.	n.d.
Autre	Gaz naturel: acheminé par gazoduc depuis la source	n.d.	n.d.
Autre	Gaz naturel : à partir de GNL	n.d.	n.d.
Autre	Gaz de schiste: acheminé par gazoduc depuis la source	n.d.	n.d.
Autre	Charbon	n.d.	n.d.

».

Art.14. L'annexe II du même règlement est remplacée par une nouvelle annexe II formulée comme suit :

«Annexe II

CALCUL DE LA NORME DE BASE CONCERNANT LES CARBURANTS POUR LES CARBURANTS FOSSILES

Méthode de calcul

a) La norme de base concernant les carburants se calcule sur la base de la consommation moyenne de pétrole, de diesel, de gazole, de GPL et de GNC (carburants fossiles) de l'Union, comme suit :

Norme de base concernant les carburants=
$$\frac{\sum_{x} (GHGi_{x} \times MJ_{x})}{\sum_{x} MJ_{x}}$$

où:

:

«x» représente les différents carburants et énergies relevant de la présente directive, tels que définis dans le tableau ci- dessous ;

«GHGi_x» est l'intensité d'émission de gaz à effet de serre de la quantité annuelle de carburant x ou d'énergie relevant de la présente directive vendue sur le marché, exprimée en gCO_{2eq}/MJ. Les valeurs correspondant aux carburants fossiles figurant à l'annexe I, partie 2, point 5, sont utilisées ; «MJ_x» est l'énergie totale fournie et convertie à partir des volumes déclarés du carburant x, exprimée en mégajoules.

b) Données relatives à la consommation

Les données relatives à la consommation utilisées pour le calcul de la valeur sont les suivantes :

Carburant	Consommation énergétique (MJ)	Source
Diesel	7 894 969 × 10 ⁶	
Gazole non routier	240 763 × 10 ⁶	1
Pétrole	3 844 356 × 10 ⁶	Déclarations 2010 des États membres au titre de la
GPL	217 563 × 10 ⁶	- CCNUCC
GNC	51 037 × 10 ⁶	

Intensité d'émission de gaz à effet de serre

La norme de base concernant les carburants pour 2010 est de: 94,1 gCO_{2e0}/MJ ».

Art.15. L'annexe III du même règlement est remplacée par une nouvelle annexe III formulée comme suit :

« Annexe III

MODÈLE POUR LA COMMUNICATION DES INFORMATIONS EN VUE DE GARANTIR LA COHÉRENCE DES DONNÉES NOTIFIÉES

Carburant — fournisseurs individuels

						Qu	antité ²	Inten	Réduc	Rédu
Ent rée	Rapport conjoint (OUI/NO N)	Pays	Fourniss eur ¹	Type de carbura nt ⁷	Code NC du carburan t ⁷	par litres	par énergi e	sité de GES moye nne	tion des émissi ons en amont	tion moye nne en 2010
		Cod e NC	Intensité de GES ⁴	Matière de base	Code NC	Inten sité de GES ⁴	durabl e (Oui/N on)			
1	(Con	posant nposant rants fo	te de	Compo	bsante B.1 (C biocarbur		nte de			
	Composante F.n (Composante de carburants fossiles)		ite de Composante B.m (Composante de			inte de				
		Cod e NC ²	Intensité de GES ⁴	Matière de base	Code NC ²	Inten sité de GES ⁴	durabl e (Oui/N on)			
k	(Com	posante posant ants fos	e de	Compos	Composante B.1 (Composante de biocarburants)		nte de			
	(Com	posante posante ants fos					nte de			

${\it Carburant-fournisseurs\ conjoints}$

	Rappor					Qua	intité²	Intonsi	D 4 d	D 4 alone 41
Entr ée	t conjoin t (Oui/N on)	Pay s	Fournisse ur ¹	Type de carbura nt ⁷	Code NC du carbura nt ⁷	par litres	par énergie	Intensi té de GES moyen ne	Réducti on des émissio ns en amont ⁵	Réducti on moyen ne en 2010

	Rappor					Qua	antité²	Intensi	Réducti	Réduct
Entr ée	t conjoin t (Oui/N on)	onjoin Pay Fournisse t s ur ¹	njoin Pay Fournisse t s ur¹ Carbura car ui/N r		Code NC du carbura nt ⁷	par litres	par énergie	té de GES moyen ne	on des émissio ns en amont ⁵	on moyen ne en 2010
	Oui									
	Oui									
			Sous-tot	al						
		Cod e Intensité de GES ⁴ de base NC Intensi durable (Oui/N GES ⁴ on)								
1	(Cor	nposan nposar rants f		Compo	sante B.1 (biocarbu		ante de		198	
	(Cor	nposan nposar rants f	Control of the second	Compos	ante B.m (biocarbu		ante de			
	Oui									
	Oui									
			Sous-tota	1						
		Cod e NC ²	Intensité de GES ⁴	Matière de base	Code NC ²	Intensi té de GES ⁴	durable (Oui/N on)			
x	Composante F.1 (Composante de carburants fossiles)			Composante B.1 (Composante biocarburants)			nte de			
	Composante F.n (Composante de carburants fossiles)			Composante B.m (Composante de biocarburants)			nte de			

Électricité

Rapport			Tune	Quantité	Intensité	Réduction par rapport à la moyenne de 2010
conjoint (Oui/Non)	Pays	Fournisseur ¹	Type d'énergie ⁷	par énergie	de GES	
Non						
		Informatio	ns relatives au	x fournisseur	s conjoints	
Rapport			Time	Quantité	Intonsité	D(dti-
conjoint (Oui/Non)	Pays	Fournisseur ¹	Type d'énergie ⁷	par énergie	Intensité de GES	Réduction par rappor à la moyenne de 201

Oui			
Oui			
	Sous-		
	Sous- total		

Origine — Fournisseurs individuels⁸

Entrée 1	Compo F.	osante 1	Entrée 1	Compo F.	osante n	Entrée k	Compo F.		Entrée k		osante n
Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es
											-11
						*:					
	-										

Entrée	Composante	Entrée	Composante	Entrée	Composante	Entrée	Composante
1	B.1	1	B.m	k	B.1	k	B.m

Déno m. Comm Matièr e de base	Densit é API ³	Tonn es									
	0.50										
									2.1/		
- 1											
1											

Origine — Fournisseurs conjoints⁸

Entrée 1		osante .1	Entrée 1	Compo F.	osante n	Entrée x	Compo F.		Entrée x	1	osante n
Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es

Entrée 1		osante .1	Entrée 1		osante .n	Entrée x		osante .1	Entrée x	100.17 100.00	osante .n
Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Toni es
Entrée	Compo		Entrée	Compo		Entrée	Compo		Entrée	Compo B.r	
Déno m. Comm Matièr e de	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	x Déno m. Comm . Matièr e de base	Densit é API ³	Tonn es

Entrée 1	Compo F.	osante 1	Entrée 1		osante .n	Entrée x		osante 1	Entrée x	Compo F.	osante n
Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es	Déno m. Comm Matièr e de base	Densit é API ³	Tonn es
400											

Lieu d'achat⁹

Entré e	Com po- sante	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s
1	F.1												
1	F.n												
1	B.1												
1	B.m												
k	F.1												

Entré e	Com po- sante	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s	Nom des install at. de traite ment/ raffine ries	Pay s
k	F.n												
k	B.1								- 9				
k	B.m												
1	F.1												
1	F.n												
1	B.1												
1	B.m												
х	F.1												
х	F.n												
х	B.1												7
х	B.m												

Total de l'énergie déclarée et des réductions réalisées par État membre

	Volume (par énergie) ¹⁰	Intensité de GES	Réduction par rapport à la moyenne de 2010
--	------------------------------------	------------------	---

Notes relatives au format

Le modèle destiné à la communication des informations par les fournisseurs est identique au modèle utilisé pour la communication des informations par les États membres.

Les cellules grisées ne doivent pas être remplies.

- 1. L'identification du fournisseur est définie à l'annexe I, partie 1, point 3 a);
- 2. La quantité de carburant est définie à l'annexe I, partie 1, point 3 c) ;
- 3. La densité API (American Petroleum Institute) est définie conformément à la méthode d'essai ASTM D287 ;
- 4. L'intensité d'émission de gaz à effet de serre est définie à l'annexe I, partie 1, point 3 e);
- 5. L'UER est définie à l'annexe I, partie 1, point 3 d) ; les modalités de communication des informations sont définies à l'annexe I, partie 2, point 1) ;
- 6. La quantité d'électricité est définie à l'annexe I, partie 2, point 6;